Biogenic Synthesis of Silver Nanoparticles with Antimicrobial Properties

N. Lagopati, M.-A. Gatou, D.S. Tsoukleris, E.A. Pavlatou

Nanomedicine & Nanotechnology (2020), 5 (1), 1-12

The transmission of a wide range of diseases, related to the infection by pathogenic microorganisms is a major public health problem that daily endangers the safety of human population. Silver has been thoroughly studied and used against bacteria due to its antimicrobial properties. Nanostructured silver gathers all the advantages of the silver itself, as well as the advanced performance of the nanomaterials. Thus, currently, silver nanoparticles constitute the most widely used kind of nanoparticles in biomedicine, due to their attractive antimicrobial properties. A variety of physical and chemical methods are employed for the AgNPs synthesis. However, many of them include the use of toxic reagents or require large amounts of energy, during the synthesis process. For this reason, many eco-friendly methods are proposed in order to synthesize AgNPs. Hence, biogenic synthesis of AgNPs, utilizing biological resources opens a novel route for the development of alternative production processes. These methods seem to have significant dvantages, as the extracts contribute positively to the formation and enhancement of the antimicrobial activity of AgNPs, also acting as protective agents of the produced particles. In this review an integrated approach of AgNPs bio-synthetic methods using microorganisms, such as bacteria and fungi, plants and plant extracts, as well as several templates, like DNA and viruses is discussed, shedding light on the comparative advantages of them.


Please publish modules in offcanvas position.